Adaptive Bayesian Regression Splines in Semiparametric Generalized Linear Models

نویسنده

  • Clemens Biller
چکیده

This paper presents a fully Bayesian approach to regression splines with automatic knot selection in generalized semiparametric models for fundamentally non Gaussian responses In a basis function representation of the regression spline we use a B spline basis The reversible jump Markov chain Monte Carlo method allows for simultaneous estimation both of the number of knots and the knot placement together with the unknown basis coe cients determining the shape of the spline Since the spline can be represented as design matrix times unknown basis coe cients it is straightforward to include additionally a vector of covariates with xed e ects yielding a semiparametric model The method is illustrated with data sets from the literature for curve estimation in generalized linear models the Tokyo rainfall data and the coal mining disaster data and by a credit scoring problem for generalized semiparametric models

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Estimation in Single-index Models

Single-index models offer a flexible semiparametric regression framework for high-dimensional predictors. Bayesian methods have never been proposed for such models. We develop a Bayesian approach incorporating some frequentist methods: B-splines approximate the link function, the prior on the index vector is Fishervon Mises, and regularization with generalized cross validation is adopted to avo...

متن کامل

Simultaneous probability statements for Bayesian P-splines

P-splines are a popular approach for fitting nonlinear effects of continuous covariates in semiparametric regression models. Recently, a Bayesian version for P-splines has been developed on the basis of Markov chain Monte Carlo simulation techniques for inference. In this work we adopt and generalize the concept of Bayesian contour probabilities to Bayesian P-splines within a generalized additi...

متن کامل

Semiparametric models for missing covariate and response data in regression models.

We consider a class of semiparametric models for the covariate distribution and missing data mechanism for missing covariate and/or response data for general classes of regression models including generalized linear models and generalized linear mixed models. Ignorable and nonignorable missing covariate and/or response data are considered. The proposed semiparametric model can be viewed as a se...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Bayesian Inference for Generalized Additive Regression based on Dynamic Models

We present a general approach for Bayesian inference via Markov chain Monte Carlo MCMC simulation in generalized additive semiparametric and mixed models It is particularly appropriate for discrete and other fundamentally non Gaussian responses where Gibbs sampling techniques developed for Gaussian models cannot be applied We use the close relation between nonparametric regression and dynamic o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998